

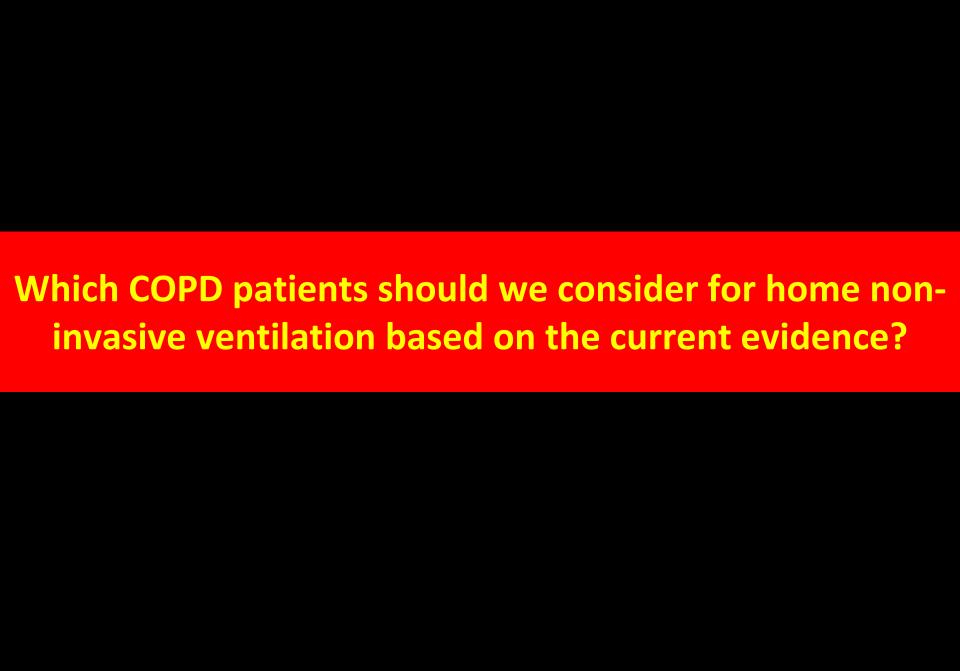
London Respiratory Muscle Group

Clinical Trials of Home Non-Invasive Ventilation in COPD: Who, How and When?

Nicholas Hart

Professor in Respiratory & Critical Care Medicine

Director of Lane Fox Respiratory Service


St Thomas' Hospital

Guys & St Thomas' NHS Foundation Trust

London UK

Joint Editor-in-Chief THORAX

nicholas.hart@gstt.nhs.uk @NickHartThorax

Unstable Post AECOPD Patients

VS

Chronic Stable COPD Patients

Unstable Post AECOPD Patients

VS

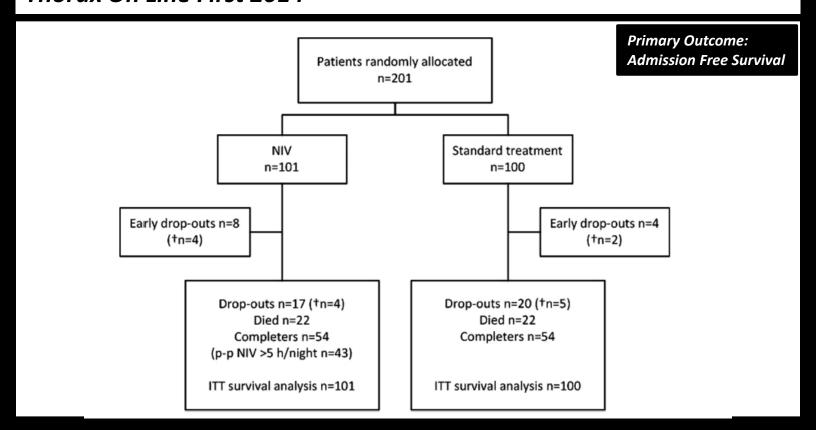
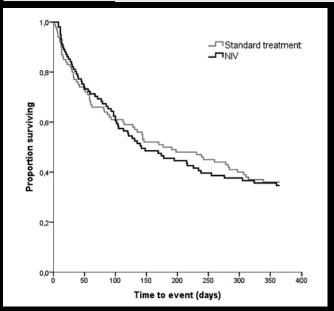
Chronic Stable COPD Patients

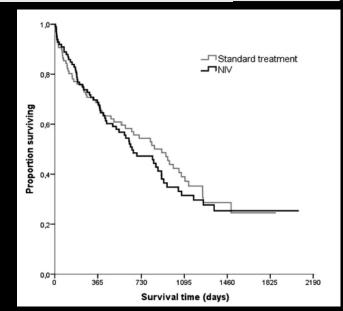
Nocturnal non-invasive ventilation in COPD patients with prolonged hypercapnia after ventilatory support for acute respiratory failure: a randomised, controlled, parallel-group study

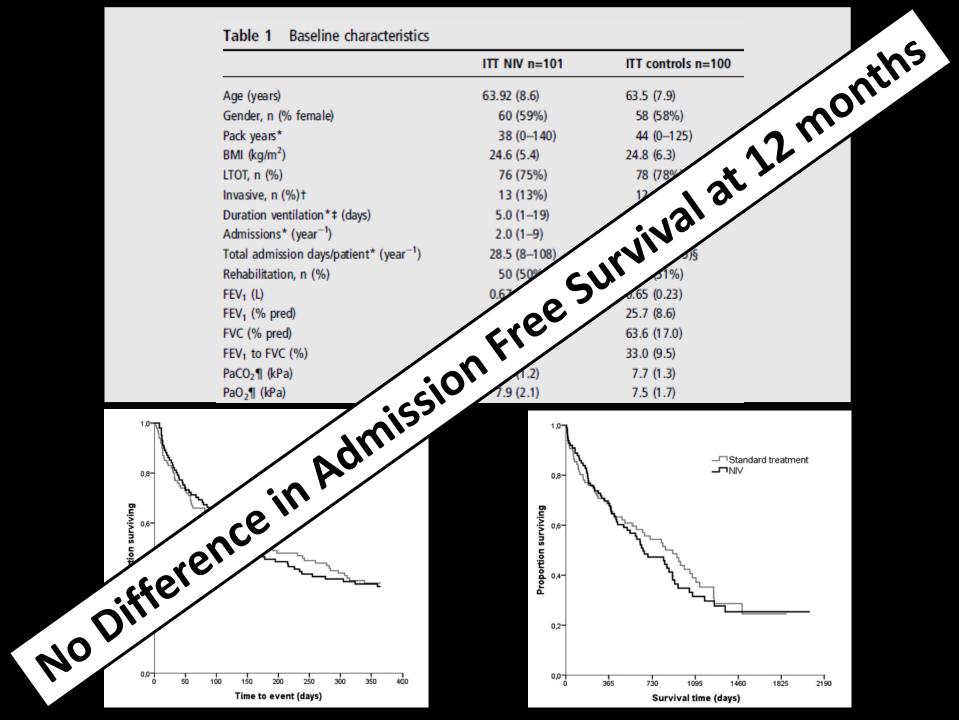
F M Struik, ^{1,2} R T M Sprooten, ³ H A M Kerstjens, ^{1,2} G Bladder, ¹ M Zijnen, ⁴ J Asin, ⁵ N A M Cobben, ³ J M Vonk, ^{2,6} P J Wijkstra ^{1,2}

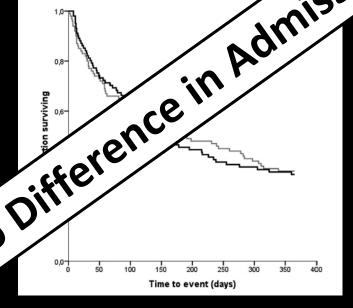
RESCUE TRIAL

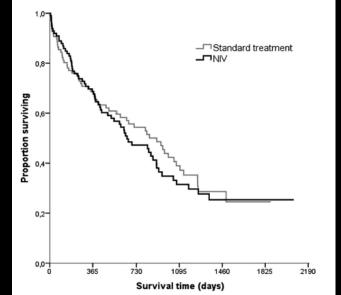
Thorax On Line First 2014


Table 1 Baseline characteristics


	ITT NIV n=101	ITT controls n=100
Age (years)	63.92 (8.6)	63.5 (7.9)
Gender, n (% female)	60 (59%)	58 (58%)
Pack years*	38 (0-140)	44 (0-125)
BMI (kg/m²)	24.6 (5.4)	24.8 (6.3)
LTOT, n (%)	76 (75%)	78 (78%)
Invasive, n (%)†	13 (13%)	12 (12%)
Duration ventilation*‡ (days)	5.0 (1-19)	5.0 (1-24)
Admissions* (year ⁻¹)	2.0 (1-9)	2.0 (1-10)
Total admission days/patient* (year ⁻¹)	28.5 (8-108)	22.0 (6-115)§
Rehabilitation, n (%)	50 (50%)	51 (51%)
FEV ₁ (L)	0.67 (0.23)	0.65 (0.23)
FEV ₁ (% pred)	25.6 (7.8)	25.7 (8.6)
FVC (% pred)	64.3 (19.8)	63.6 (17.0)
FEV ₁ to FVC (%)	32.5 (9.0)	33.0 (9.5)
PaCO ₂ ¶ (kPa)	7.9 (1.2)	7.7 (1.3)
PaO ₂ ¶ (kPa)	7.9 (2.1)	7.5 (1.7)


Table 1 Baseline characteristics


	ITT NIV n=101	ITT controls n=100
Age (years)	63.92 (8.6)	63.5 (7.9)
Gender, n (% female)	60 (59%)	58 (58%)
Pack years*	38 (0-140)	44 (0-125)
BMI (kg/m²)	24.6 (5.4)	24.8 (6.3)
LTOT, n (%)	76 (75%)	78 (78%)
Invasive, n (%)†	13 (13%)	12 (12%)
Duration ventilation*‡ (days)	5.0 (1-19)	5.0 (1-24)
Admissions* (year ⁻¹)	2.0 (1-9)	2.0 (1-10)
Total admission days/patient* (year ⁻¹)	28.5 (8-108)	22.0 (6-115)§
Rehabilitation, n (%)	50 (50%)	51 (51%)
FEV ₁ (L)	0.67 (0.23)	0.65 (0.23)
FEV ₁ (% pred)	25.6 (7.8)	25.7 (8.6)
FVC (% pred)	64.3 (19.8)	63.6 (17.0)
FEV ₁ to FVC (%)	32.5 (9.0)	33.0 (9.5)
PaCO ₂ ¶ (kPa)	7.9 (1.2)	7.7 (1.3)
PaO ₂ ¶ (kPa)	7.9 (2.1)	7.5 (1.7)

Trials of home mechanical ventilation in COPD: what have we learnt?

P B Murphy, N Hart

Failure to deliver the treatment intervention

- IPAP 19.2 ± 3.4 cmH₂O EPAP 4.8 ± 3.4 cmH₂O BUR 15 ± 3 bpm
- Nocturnal TcCO₂ of 0.8kPa lower at one year in the HMV group
- No difference in PaCO₂ at 12 months as improvement in standard treatment group

Inappropriate primary outcome

- 1 year admission free survival (65% HMV vs. 64% Standard Treatment)
- Most appropriate clinical and cost effective outcome

Inappropriate target population

- RESCUE targeted high risk group
- Borderline hypercapnic respiratory failure (PaCO₂ <6kPa) enrolled

Failure of the intervention itself

Trials of home mechanical ventilation in COPD: what have we learnt?

P B Murphy, N Hart

Failure to deliver the treatment intervention

- IPAP 19.2 \pm 3.4 cmH₂O EPAP 4.8 \pm 3.4 cmH₂O BUR 15 \pm 3 bpm
- Nocturnal TcCO₂ of 0.8kPa lower at one year in the HMV group
- No difference in PaCO₂ at 12 months as improvement in standard treatment group

Inappropriate primary outcome

- 1 year admission free survival (65% HMV vs. 64% Standard Treatment)
- Most appropriate clinical and cost effective outcome

Inappropriate target population

- RESCUE targeted high risk group
- Borderline hypercapnic respiratory failure (PaCO₂ <6kPa) enrolled

Failure of the intervention itself

Trials of home mechanical ventilation in COPD: what have we learnt?

P B Murphy, N Hart

Failure to deliver the treatment intervention

- IPAP 19.2 ± 3.4 cmH₂O EPAP 4.8 ± 3.4 cmH₂O BUR 15 ± 3 bpm
- Nocturnal TcCO₂ of 0.8kPa lower at one year in the HMV group
- No difference in PaCO₂ at 12 months as improvement in standard treatment group

Inappropriate primary outcome

- 1 year admission free survival (65% HMV vs. 64% Standard Treatment)
- Most appropriate clinical and cost effective outcome

Inappropriate target population

- RESCUE targeted high risk group
- Borderline hypercapnic respiratory failure (PaCO₂ <6kPa) enrolled

Failure of the intervention itself

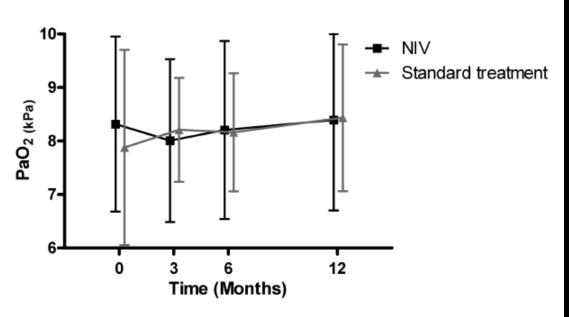
Trials of home mechanical ventilation in COPD: what have we learnt?

P B Murphy, N Hart

Failure to deliver the treatment intervention

- IPAP 19.2 ± 3.4 cmH₂O EPAP 4.8 ± 3.4 cmH₂O BUR 15 ± 3 bpm
- Nocturnal TcCO₂ of 0.8kPa lower at one year in the HMV group
- No difference in PaCO₂ at 12 months as improvement in standard treatment group

Inappropriate primary outcome


- 1 year admission free survival (65% HMV vs. 64% Standard Treatment)
- Most appropriate clinical and cost effective outcome

Inappropriate target population

- RESCUE targeted high risk group
- Borderline hypercapnic respiratory failure (PaCO₂ >6kPa) enrolled

Failure of the intervention itself

Trials of home mechanical ventilation in COPD: what have we learnt?

P B Murphy, N Hart

Failure to deliver the intervention

- IPAP 19.2 ± 3.4 cmH₂O EPAP 4.8 ± 3.4 cmH₂O BUR 15 ± 3 bpm
- Nocturnal TcCO₂ of 0.8kPa lower at one year in the HMV group
- No difference in PaCO₂ at 12 months as improvement in standard treatment group

Inappropriate primary outcome

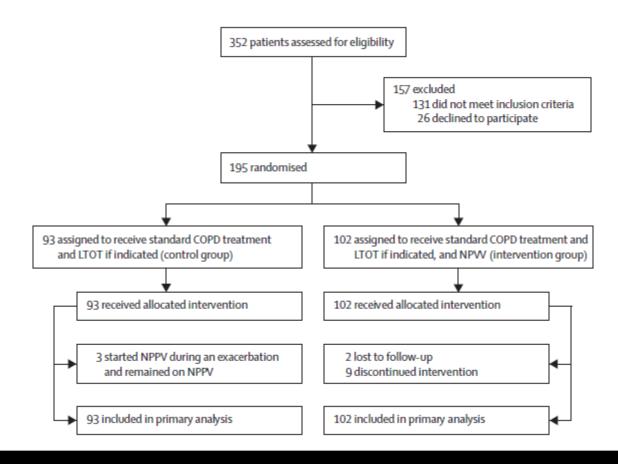
- 1 year admission free survival (65% HMV vs. 64% Standard Treatment)
- Most appropriate clinical and cost effective outcome

Inappropriate target population

- RESCUE targeted high risk group
- Borderline hypercapnic respiratory failure (PaCO₂ <6kPa) enrolled

Failure of the intervention itself

Unstable Post AECOPD Patients


VS

Chronic Stable COPD Patients

Non-invasive positive pressure ventilation for the treatment of severe stable chronic obstructive pulmonary disease: a prospective, multicentre, randomised, controlled clinical trial

Thomas Köhnlein, Wolfram Windisch, Dieter Köhler, Anna Drabik, Jens Geiseler, Sylvia Hartl, Ortrud Karg, Gerhard Laier-Groeneveld, Stefano Nava, Bernd Schönhofer, Bernd Schucher, Karl Wegscheider, Carl P Criée, Tobias Welte

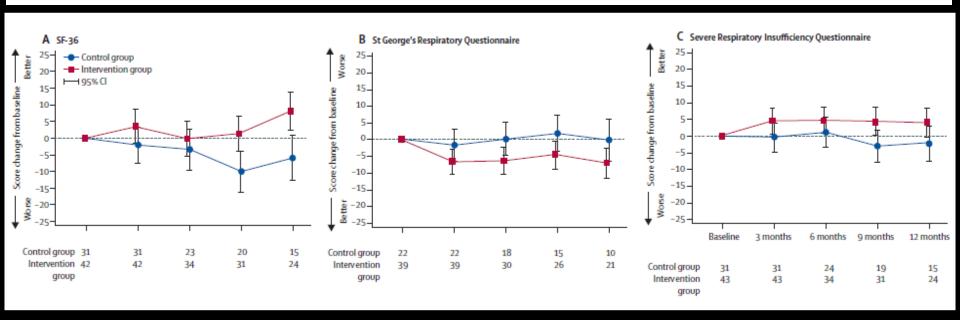
Lancet Respiratory On Line First 2014

A cohort of COPD patients with advanced disease and established chronic respiratory failure and relatively well preserved exercise capacity

	Control group (n=93)	Non-invasive positive pressure ventilation group (n=102)
Age, years	64-4 (8-0)	62.2 (8.6)
Male, n (%)	56 (60%)	65 (64%)
Body-mass index, kg/m²	24.5 (5.8)	24.8 (5.8)
FVC, % predicted	53.3% (13.8)	50.4% (13.3)
FEV, % predicted	27.5% (8.9)	26% (11.0)
FEV ₃ /FVC, %	41.2% (11.4)	40·4% (11·5)
Residual volume/total lung capacity, %	72.7% (8.9)	73.0% (8.5)
рН	7.39 (0.05)	7-39 (0-04)
PaCO ₂ , kPa	7.7 (0.7)	7.8 (0.8)
PaO ₂ , kPa*	8.7 (1.9)	8.6 (2.1)
SaO ₂ , %*	90.8% (5.9)	90.3% (6.2)
HCO ₃ -, mmol/L	33.9 (4.1)	34·3 (4·0)
Base excess, mmol/L	8.0 (3.9)	7.8 (3.8)
6-min walk distance, m	249.6 (145.3)	226-7 (121-2)
Long-term oxygen treatment, n (%)	60 (65%)	67 (66%)

Low emergency admission rate

	3 months	6 months	9 months	12 months
Overall	0.8 (3.5)	2.1 (5.7)	0.9 (4.0)	2.6 (8.6)
Non-invasive positive pressure ventilation group	0.2 (1.1)	1.4 (4.7)	1.3 (4.9)	2.2 (10.2)
Control group	1.5 (4.9)	3.0 (6.9)	0.4 (1.9)	3.1 (5.4)
Values are mean (SD).				

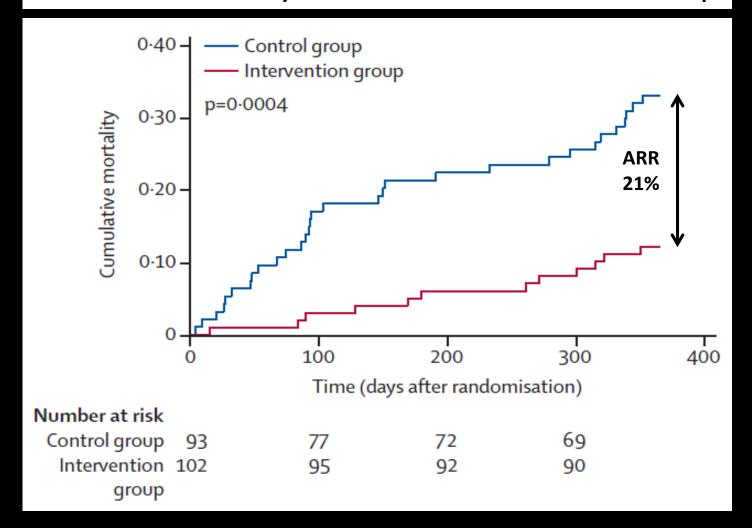

Greater reduction in daytime PaCO₂ in HMV group

	Baseline	14 days	3 months	6 months	9 months	12 months
All patients	7.9 (0.8)	7.0 (1.1)	7.0 (1.1)	6.7 (1.0)	6.8 (0.9)	6.9 (1.1)
Control group	7.9 (0.7)	7.5 (1.1)	7.4 (0.9)	7.1 (1.0)	7-3 (0-8)	7-4 (1-2)
Non-invasive positive pressure ventilation group	8.0 (0.8)	6.6 (0.9)	6.6 (1.1)	6.4 (0.9)	6.4 (0.9)	6.5 (0.9)

Target 20% reduction at 7 days in HMV Group

Subgroup Health Related Quality of Life Analysis

No difference in SF-36 except in the general health perception subscale


Difference in the SGRQ summary score

Difference in the SRI summary scale score

GENERIC HRQL

SPECIFIC HRQL

Lower all-cause mortality in the HMV vs. Standard Treatment Group

Need to Treat 10?

Why was there an effect with home noninvasive ventilation in this trial?

- IPAP 21.6 \pm 4.7 cmH₂O EPAP 4.8 \pm 1.6 cmH₂O BUR 16.1 \pm 3.6 (range 2-24) bpm
- Targeted 20% reduction in PaCO₂ or less than 6.5kPa
- 5.6 (1.1) days for elective inpatient set up of NIV vs. 2.5 (0.2) days for standard treatment group
- Mean adherence of 5.9 (3.1) hours per night

Appropriate primary outcome

- 1 year all cause mortality
- Although a useful clinical and cost effective outcome, cost effectiveness is offset by the extended inpatient set up and inpatient follow up
- Trial terminated early as 'mortality effect was larger than anticipated'

Appropriate target population

- Targeted a group with severe hypercapnic respiratory failure (PaCO₂ > 7kPa)
- Screening data lacking and therefore true clinical applicability unknown

- 1 year all cause mortality (12% HMV vs. 33% Standard Treatment)
- HRQL difference is a selected subgroup

- IPAP 21.6 \pm 4.7 cmH₂O EPAP 4.8 \pm 1.6 cmH₂O BUR 16.1 \pm 3.6 (range 2-24) bpm
- Targeted 20% reduction in PaCO₂ or less than 6.5kPa (6.5kPa vs 7.4kPa at 1 year)
- 5.6 (1.1) days for elective inpatient set up of NIV vs. 2.5 (0.2) days for standard treatment group
- Mean adherence of 5.9 (3.1) hours per night

Appropriate primary outcome

- 1 year all cause mortality
- Although a useful clinical and cost effective outcome, cost effectiveness is offset by the extended inpatient set up and inpatient follow up
- Trial terminated early as 'mortality effect was larger than anticipated'

Appropriate target population

- Targeted a group with severe hypercapnic respiratory failure (PaCO₂ > 7kPa)
- Screening data lacking and therefore true clinical applicability unknown

- 1 year all cause mortality (12% HMV vs. 33% Standard Treatment)
- HRQL difference is a selected subgroup

- IPAP 21.6 \pm 4.7 cmH₂O EPAP 4.8 \pm 1.6 cmH₂O BUR 16.1 \pm 3.6 (range 2-24) bpm
- Targeted 20% reduction in PaCO₂ or less than 6.5kPa
- 5.6 (1.1) days for elective inpatient set up of NIV vs. 2.5 (0.2) days for standard treatment group
- Mean adherence of 5.9 (3.1) hours per night

Appropriate primary outcome

- 1 year all cause mortality
- Although a useful clinical and cost effective outcome, cost effectiveness is offset by the extended inpatient set up and inpatient follow up
- Trial terminated early as 'mortality effect was larger than anticipated'

Appropriate target population

- Targeted a group with severe hypercapnic respiratory failure (PaCO₂ > 7kPa)
- Screening data lacking and therefore true clinical applicability unknown

- 1 year all cause mortality (12% HMV vs. 33% Standard Treatment)
- HRQL difference is a selected subgroup

- IPAP 21.6 \pm 4.7 cmH₂O EPAP 4.8 \pm 1.6 cmH₂O BUR 16.1 \pm 3.6 (range 2-24) bpm
- Targeted 20% reduction in PaCO₂ or less than 6.5kPa
- 5.6 (1.1) days for elective inpatient set up of NIV vs. 2.5 (0.2) days for standard treatment group
- Mean adherence of 5.9 (3.1) hours per night

Appropriate primary outcome

- 1 year all cause mortality
- Although a useful clinical and cost effective outcome, cost effectiveness is offset by the extended inpatient set up and inpatient follow up
- Trial terminated early as 'mortality effect was larger than anticipated'

Appropriate target population

- Targeted a group with severe hypercapnic respiratory failure (PaCO₂ > 7kPa)
- Screening data lacking and therefore true clinical applicability unknown

- 1 year all cause mortality (12% HMV vs. 33% Standard Treatment)
- HRQL difference is a selected subgroup

- IPAP 21.6 ± 4.7 cmH₂O EPAP 4.8 ± 1.6 cmH₂O BUR 16.1 ± 3.6 (range 2-24) bpm
- Targeted 20% reduction in PaCO₂ or less than 6.5kPa
- 5.6 (1.1) days for elective inpatient set up of NIV vs. 2.5 (0.2) days for standard treatment group
- Mean adherence of 5.9 (3.1) hours per night

Appropriate primary outcome

- 1 year all cause mortality
- Although a useful clinical and cost effective outcome, cost effectiveness is offset by the extended inpatient set up and inpatient follow up
- Trial terminated early as 'mortality effect was larger than anticipated'

Appropriate target population

- Targeted a group with severe hypercapnic respiratory failure (PaCO₂ > 7kPa)
- Screening data lacking and therefore true clinical applicability unknown

- 1 year all cause mortality (12% HMV vs. 33% Standard Treatment)
- HRQL difference is a selected subgroup

SUMMARY

Patient Selection – Who?

Mode of NIV – How?

Timing of initiation – When?

Best Outcome – Which?

Patient Selection – Who?

Mode of NIV – How?

Timing of initiation – When?

Best Outcome – Which?

Patient Selection – Current Evidence

- Severe stable COPD (FEV₁ < 1L)
- Symptoms of nocturnal hypoventilation with high symptom load
- Baseline P_aCO₂ > 7kPa (50mmHg)
- Preserved exercise capacity (6MWT >200m)
- Low annual emergency admission rate prior to enrolment

Patient Selection – Ongoing Trial

- Severe COPD (FEV₁ < 1L)
- Post AECOPD requiring acute NIV
- P_aCO₂ > 7kPa (50mmHg) at 2-4 weeks post termination of acute NIV
- High annual emergency admission rate prior to enrolment
- Low health related quality of life

NHS Foundation Trust

HoT-HMV Trial

Independent Data Monitoring Committee

Open Report

Baseline	Total		
characteristics	(N=76)		
*Age (years)	66.6 (9.3)		
*BMI (kg/m²)	23.1 (5.4)		
*Prior use of LTOT (n (%))	36 (70.6%)		
*≥3 COPD related admissions in last year (n (%))	28 (54.9%)		
Gender (female) (n (%))	30 (53.6%)		
Smoking pack year history (n (%))	49.3 (21.5)		
AHI (/hr) (median (25 th percentile to 75 th percentile))	1.7 (0.8 to 4.6)		
Neck circumference (cm)	37.6 (4.8)		
Waist circumference (cm)	90.6 (15.3)		
FEV ₁ (I)	0.6 (0.2)		
FEV ₁ (%)	24.7 (8.9)		
FVC (I)	1.7 (0.7)		
FVC (%)	57.1 (19.0)		
FEV ₁ /FVC	0.4 (0.1)		
PaO ₂ on room air	6.4 (1.1)		
PaCO ₂ on room air	7.9 (1.0)		
SGRQ Summary (QoL)	71.2 (12.6)		
SRI Summary (QoL)	45.9 (14.2)		

Home oxygen therapy vs. Home mechanical ventilation post acute exacerbation of COPD requiring NIV

Primary outcome Admission free survival

Inclusion Criteria PaCO2 > 7kPa2-4 weeks post cessation of acute NIV

Patient Selection – Who?

Mode of NIV – How?

Timing of initiation – When?

Best Outcome – Which?

Mode of NIV – Current Evidence

- Pressure support ventilation
- High pressure (IPAP > 22cmH₂O)
- Back up rate > 16bpm
- Targeted reduction in P_aCO₂ > 20% from baseline or P_aCO₂ < 6.5kPa
- Adherence > 6 hours per night

Patient Selection – Who?

Mode of NIV – How?

Timing of initiation – When?

Best Outcome – Which?

Timing of Initiation – Current Evidence

- Stable state
- $P_aCO_2 > 7kPa$ (50mmHg)

Timing of Initiation – Ongoing Trial

- Post AECOPD requiring acute NIV
- P_aCO₂ > 7kPa (50mmHg) at 2-4 weeks post termination of acute NIV
- High annual emergency admission rate prior to enrolment

Patient Selection – Who?

Mode of NIV – How?

Timing of initiation – When?

Best Outcome – Which?

Best Outcome Measures

CLINICAL EFFECTIVENESS

- Daytime PaCO₂
- Health related quality of life
- Physical activity

COST EFFECTIVENESS

Admission-free survival

CONCLUSION

- Nocturnal home non-invasive ventilation has been shown to improve outcome in the stable COPD patients with chronic respiratory failure and low hospital admission frequency and preserved exercise tolerance
- Nocturnal non-invasive ventilation has not been shown to be a useful treatment following an acute exacerbation of COPD
- The outcome of the HoT-HMV trial will be published in September 2016

HoT-HMV Trial: Home Mechanical Ventilation vs. Home Oxygen Therapy in COPD (NCT00990132)

Morning Symposium Monday 5th September 'Latest Developments in NIV' Evening Symposium Tuesday 6th September 'HMV in COPD – Where are we now?' Lunchtime Wednesday 7th September Press Release

Lane Fox Clinical Respiratory Physiology Research Unit

Principal Investigators Dr Bronwen Connolly, Dr Patrick Murphy, Dr Joerg Steier, Dr Phil Marino & Dr Nicholas Hart

Clinical Research Fellows Dr Swapna Mandal, Dr Eui-Sik Suh, Dr Michelle Ramsay, Dr Maxine Partout Clinical Trials Co-ordinator Miss Gill Arbane

London Respiratory Muscle Group

Professor Michael Polkey, Dr Bronwen Connolly, Dr Nicholas Hart, Dr Nicholas Hopkinson, Dr Caroline Jolley, Dr William Mann, Vicky McBean, Dr Patrick Murphy, Dr Gerrard Rafferty, Dr Joerg Steier, and Professor John Moxham

Division of Asthma, Allergy Lung Biology King's College London

Professor Jeremy Ward, Professor John Moxham

Centre for Human Physiology and Aerospace Medicine

Professor Steve Harridge and Professor David Gradwell

British Lung Foundation

CanHELP Charity

Guy's & St Thomas' Charitable Foundation

European Intensive Care Society

European Respiratory Society

National Institute of Health Research

Medical Research Council

NHS Innovations London

Peel Medical Charity

Philips-Respironics (unrestricted grants)

Philips (unrestricted grant)

Resmed Charitable Foundation

Resmed (unrestricted grant)

Fisher-Paykel (unrestricted grant)

e-mail: nicholas.hart@gstt.nhs.uk

